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Abstract

On January 24–26, 2013, the World Health Organization convened the first integrated meeting on 

“The development and clinical trials of vaccines that induce broadly protective and long-lasting 

immune responses” to review the current status of development and clinical evaluation of novel 

influenza vaccines as well as strategies to produce and deliver vaccines in novel ways. Special 

attention was given to the development of possible universal influenza vaccines. Other topics that 

were addressed included an update on clinical trials of pandemic and seasonal influenza vaccines 

in high-risk groups and vaccine safety, as well as regulatory issues.
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1. Introduction

Influenza viruses remain a serious threat to public health, due to their ability to escape 

the human immune system through frequent antigenic drift and occasional antigenic shift. 

The unabated circulation of highly pathogenic avian influenza (HPAI) A H5N1 influenza 

virus and the recent demonstration that relatively few mutations could confer mammalian 

transmissibility to the virus underscore the pandemic potential of HPAI viruses. The 

emergence of the 2009 pandemic H1N1 influenza virus (A(H1N1)pdm09) illustrates the 

risk of emergence of a new pandemic from an animal influenza virus and the lengthy 

production timeline of a strain-specific pandemic vaccine. It is thus highly desirable to 

develop influenza vaccines that offer broad cross-subtype protection to combat any possible 

new influenza A virus pandemic.

As reviewed by Robert Huebner (US Biomedical Advanced Research and Development 

Authority, Department of Health and Human Services (HHS), Washington, DC, USA) in 

his keynote address, current seasonal influenza vaccines confer protection only against 

homologous virus strains, which necessitates frequent reformulation to include newly 

emerging strains. Trivalent inactivated vaccines (TIV) show only 50–70% protective 

effectiveness in adults, with lower effectiveness in the elderly and young infants. It 

is recognized that mammalian cell-based influenza vaccines, recombinant vaccines, and 

adjuvanted vaccines, should be encouraged to provide greater pandemic vaccine production 

capacity. Currently, at least one cell-based vaccine and one recombinant vaccine produced 

in insect cells have been licensed in the USA. Quadrivalent inactivated vaccines (QIV) 

with two influenza A and two influenza B strains, and one quadrivalent live attenuated 

vaccine have also been approved. However, an effective universal influenza vaccine is still 

far from reality, requiring a long development process, with large-scale efficacy trials. It will 

probably also necessitate the development of new potency assays for its evaluation.

John Tam (World Health Organization (WHO), Geneva, Switzerland) summarized the 2012 

recommendations of the WHO Strategic Advisory Group of Experts (SAGE) on Influenza 

vaccination [1]. Seasonal influenza vaccination is recommended for populations at risk 

of severe influenza infection including pregnant women, children less than 5 years and 

in particular less than 2 years of age, the elderly, and individuals with underlying health 

conditions, as well as for health-care workers, who are at increased risk of exposure and may 

also spread the infection to vulnerable patients.

2. Broadly protective and universal influenza vaccine strategies

The development of a universal influenza vaccine remains challenging, requiring in-depth 

knowledge of conserved epitopes on viral proteins that can elicit cross-protective antibody 

(Ab) responses. Identified epitopes are located in the virus matrix protein 2 (M2) and 

especially its 23 N-terminal amino acid ectodomain (M2e), in the highly conserved 

HA2 region of the hemagglutinin (HA) and in the neuraminidase (NA). Potentially cross-

protective T cell epitopes were also identified within internal virion proteins, primarily the 

matrix protein 1 (M1) and the nucleoprotein (NP) [2–4].
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As reviewed by Florian Krammer (Mount Sinai Hospital, New-York, NY, USA) and by 

Guus Rimmelzwaan (Erasmus University, Rotterdam, The Netherlands), the M2e domain 

can induce a broadly protective Ab response in animals. Immunization with an M2e-HBc 

fusion antigen provided 90–100% protection against lethal virus challenge in mice and 

ferrets [5]. Abs to M2e act through antibody-dependent cellular cytotoxicity (ADCC) 

[6]. Influenza-specific, cross-reactive ADCC Abs that can trigger in vitro elimination of 

influenza-infected human blood and respiratory epithelial cells in the presence of NK cells 

have been detected in human sera devoid of neutralization activity [7].

Broadly neutralizing Abs that bind to a highly conserved conformational epitope on the 

globular head of the HA molecule were recovered from H5N1-infected individuals [8,9] and 

from mice immunized with H5 vaccine [10]. Theodore Ross (University of Pittsburgh, PA, 

USA) reported that insect cell-produced virus-like particles (VLPs) made of the HA and 

NA proteins of avian H5N1 with computationally optimized sequences (COBRA) elicited 

hemagglutination-inhibiting (HAI) Abs and protected mice and macaques against challenges 

with pathogenic H5N1 virus strains from different genetic clades [11]. A H5 HA DNA 

prime followed by a H5 HA VLP boost produced similar results with cross-clade protection 

in mice, as reported by Paul Zhou (Pasteur Institute, Shanghai). The neutralizing Abs 

elicited by these vaccination regimens were shown to bind to the globular head of HA.

However, as summarized by Krammer, the most potent broadly reactive influenza virus 

neutralizing Abs identified to date are those that bind to a highly conserved region in 

the stem of HA [12–15]. Such Abs, which were effective against all group 1 influenza A 

viruses tested, were shown to target the membrane-proximal region of the HA molecule and 

prevent membrane fusion [16,17]. Screening of libraries of human neutralizing monoclonal 

Abs (mAbs) identified Abs that bind to a conserved epitope in the fusion domain of the 

influenza virus HA subunit 2 (HA2) protein located on the HA stem. Such mAbs protect 

mice against lethal challenges with influenza A and B viruses [16,18]. A synthetic peptide 

vaccine based on this conserved neutralization epitope demonstrated protective activity in 

mice against influenza viruses of subtypes A(H3N2), A(H1N1) and A(H5N1) [19], thus 

providing proof of concept for a broadly protective HA2-based influenza vaccine. These 

mAbs are derived from a specific Ab gene heavy-chain variable region IGHV1–69, and only 

require limited affinity maturation from the germline ancestor [20]. The development of 

HA2-based influenza immunogens that afford good protection in a mouse challenge model 

is in progress [21,22], as well as a vaccine strategy based on the use of chimeric HA 

molecules that express the same stalk but different HA heads and provide heterologous and 

heterosubtypic protection in mice [23].

The virus neuraminidase (NA) antigen can also provide cross-reactive immunity and partial 

protection against heterotypic virus challenge [24,25] that seems to correlate with sialic acid 

cleavage-inhibiting Ab titers [26].

In addition to Abs, T cells also can confer broad protection against multiple influenza virus 

subtypes [27]. Cross-reactive T cell responses involving both CD4+ and CD8+ T cells were 

found to mediate early clearance of an antigenically novel influenza virus in nonhuman 

primates [28]. Cross-reactive and protective cellular immune responses were found in 
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humans after infection with a novel influenza virus [29,30]. T cell responses are mainly 

directed against the relatively conserved internal matrix (M1) protein and nucleoprotein 

(NP) of the virus [31], which ought therefore to be considered for inclusion in a universal 

vaccine.

As reviewed by Sarah Gilbert (The Jenner Institute, Oxford, UK), vaccination of human 

volunteers with a modified vaccine Ankara (MVA) recombinant virus expressing a NP-M1 

fusion protein successfully boosted pre-existing cellular immune responses to seasonal 

influenza vaccine and elicited increased T cell IFN-γ responses to NP and M1 antigens 

[31,32], as well as significant reduction in duration of virus shedding following challenge 

[33]. Clinical evaluation of a chimpanzee adenovirus NP-M1 prime followed by MVA 

NP-M1 boost is currently underway. In another study, mice vaccinated with an equimolar 

mixture of synthetic peptides corresponding to conserved T cell epitopes in M1, M2, NP 

and PB1 mixed with the adjuvant montanide ISA-51 (the Flu-v vaccine) were protected 

against lethal influenza virus challenge. The same vaccine elicited significant T cell IFN-γ 
responses in human volunteers [34].

Tania Gottlieb (Biond Vax Pharmaceuticals, Tel-Aviv, Israel) described the M-001 fusion 

protein, made by fusing peptides corresponding to conserved linear epitopes from the HA, 

NP, and M proteins. M-001 was tested for safety in clinical trials and found to elicit a CD4+ 

IFNγ+ T cell response that primed efficiently for HAI Ab responses to TIV. It was suggested 

that M-001 could be used yearly as a primer to TIV vaccination in the elderly, or as a 

prepandemic primer to new pandemic vaccines. Baoying Huang (Chinese Center for Disease 

Control and Prevention, Beijing, China) reported that a NP-M2e fusion protein produced in 

E coli and administered with alum at a dose of a few µg was able to provide broad protection 

against lethal challenge in mice.

Emphasis was made on the need to develop consensus standard assays and reagents 

that would allow relevant comparisons between the different vaccine approaches. The 

comparison of candidate vaccines for effectiveness in human volunteers was considered 

highly desirable. Rather than costly and lengthy clinical efficacy trials, it was suggested that 

human challenge studies could provide a faster and more efficient approach. The duration 

of the Ab response elicited by various vaccines is also important, and immune memory is 

essential, yet more difficult to measure.

3. Live attenuated influenza vaccines and new approaches in vaccination

As reviewed by Alain Townsend (Oxford University, UK), live attenuated influenza vaccines 

(LAIV) are based on cold-adapted (ca) mutants. Intranasal LAIV provides cross-protective 

immunity with a moderate strain-specific Ab response but a strong T cell response, 

particularly in the lungs. Their safety and efficacy have been demonstrated even in young 

children with asthma [35]. The possibility of vaccine delivery by self-administration would 

enhance efficiency in mass vaccination [36].

The development of new LAIVs for viruses with pandemic potential was reported by Kanta 

Subbarao (NIAID, NIH, Bethseda MD, USA), Larisa Rudenko (Institute of Experimental 
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Medicine, St Petersburg, Russia) and Punnee Pitisuttithum (Mahidol University, Bangkok, 

Thailand), who described the results of clinical trials with A(H5N1), A(H7N3) and 

A(H5N2) LAIVs. The vaccines were well tolerated but moderately immunogenic, requiring 

two doses to elicit adequate Ab responses in the majority of subjects [37,38]. Administration 

of H5N1 LAIV primed for a rapid and robust neutralizing antibody response to an 

inactivated subunit H5N1 vaccine boost, resulting in a broader cross-reactive response 

against the different clades of A(H5N1). As discussed by Irina Isakova-Sivak (Institute of 

Experimental Medicine, St Petersburg, Russia) it should be possible to modify the LAIV 

master donor virus A/Leningrad/134/17/57 to improve further vaccine immunogenicity. 

Christopher Ambrose (MedImmune, Gaithersburg, MD, USA) reported that serum and nasal 

IgAs were the most sensitive measure of LAIV immunogenicity [39], but that heterogeneity 

in sampling nasal secretions, especially in young children, often hindered precise Ab level 

determination. Huan H Nguyen (International Vaccine Institute, Seoul, Korea) reported that 

administration of a A(H5N1) or A(H1N1) LAIV by the sub-lingual route also elicited 

mucosal and systemic antibody responses in mice and humans similar to those observed 

after intranasal vaccination.

Pamuk Bilsel (FluGen Inc, Madison, WI, USA) described a different LAIV, a non-

replicating influenza virus (∆M2) with deletion of the M2 gene. The virus could only 

replicate in Madin-Darby canine kidney (MDCK) cells engineered to constitutively express 

the M2 protein. Injection of ∆M2 A(H1N1) virus to mice elicited systemic, cellular and 

mucosal immunity and resulted in broad cross-protection against challenges with A(H3N2) 

or A(H5N1) viruses. Cross-protection experiments in ferrets are in progress.

A panel discussion on LAIVs concluded that the identification of immune correlates of 

protection for LAIVs and the development and standardization of corresponding assays are 

of high priority. The issue of LAIV prime followed by boost with another vaccine was also 

discussed, based on the hypothesis that using two divergent strains for priming and boosting 

might increase the breadth of the immune response.

A number of reports were made on the development of new influenza vaccines based on 

virus-like particles (VLPs) consisting of recombinant HA produced in plants or insect cells 

[40]. Nathalie Landry (Medicago, Quebec, Canada) described the expression of HA VLPs 

in tobacco plants using a recombinant Agrobacterium strain. A single dose of VLPs mixed 

with alum (5 µg HA for H1 VLPs or 20 µg for H5 VLPs) was shown to elicit seroconversion 

together with as cross-reactive cell-mediated immune responses including CD8+ IFN-γ+ 

T cells in approximately 60% of subjects. A 600 kg of plant material could yield 10 

million doses of purified influenza HA VLP vaccine. Dr. Dominic Lam (Hong Kong Baptist 

University, Hong-Kong SAR, China) described the development of edible influenza vaccines 

derived from recombinant plants or Lactobacilli. Live recombinant Lactococcus lactis 
expressing H5 HA was formulated into mini-capsules for oral administration. Four doses 

of the vaccine conferred full protection to mice against a lethal A(H5N1) challenge [41]. 

A similar vaccine was developed against A(H9N2) influenza virus. Manon Cox (Protein 

Sciences Corporation, Meriden, CT, USA) described the production of the first recombinant 

trivalent influenza vaccine (Flublock™), which was recently licensed. The vaccine consists 

of purified HA produced in SF9 insect cells using a recombinant baculovirus vector.
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The issue was discussed of possible allergenic side effects due to glycan molecules from 

either plant or insect cells in the recombinant vaccines, but no such side effect has been 

reported to date. Additional assays other than HAI test will be needed to fully validate the 

recombinant HA vaccines and large scale efficacy trials will likely be required.

Attempts were made at improving the immunogenicity of classical TIV in the elderly by 

increasing the dose of antigens in the vaccine. As reviewed by Robert Atmar (Baylor 

College of Medicine, Houston, TX, USA), a high-dose TIV containing 60 µg HA per 

influenza virus strain was successfully tested in adults 65 years of age or older and shown 

to elicit a significantly increased HAI titer, higher rates of seroconversion and achievement 

of HAI titers >40 [42,43]. A similar observation was made when injecting TIV by the 

intra-dermal (ID) route [44], as reported by Filipo Ansaldi [University of Genoa, Italy), 

who showed that HAI titer, rates of seroconversion and seroprotection were higher after ID 

than after IM vaccination in subjects aged 60 years or older [45]. Akira Ainai (National 

Institute of Infectious Diseases, Japan) reported that an inactivated, wholevirion vaccine 

without adjuvant administered to healthy adults at a dose of 45 µg HA by the intranasal 

route at 0 and 3 weeks induced a 44% HAI seroconversion rate and detectable HAI and 

neutralizing Abs in nasal washes. Another approach for improving TIV was reviewed 

by Timo Vesikari (University of Tampere School of Medicine, Tampere, Finland), who 

reported the development of quadrivalent inactivated vaccines with two influenza A and 

two influenza B viruses. This is deemed necessary in view of the co-circulation of the two 

influenza B lineages, B/Yamagata and B/Victoria, in different parts of the world, and the 

fact that there is little or no cross-protection between the two [46]. Several quadrivalent 

inactivated vaccines are being developed [47,48] and a live attenuated quadrivalent vaccine 

(Q/LAIV) has recently been licensed in the USA.

Finally, the advantage of growing influenza virus in cells other than embryonated eggs 

was reviewed by both Otfried Kistner (Baxter BioScience, Orth/Donau, Austria) for Vero 

cell–derived vaccines, and Theodore Tsai (Novartis Vaccines, Cambridge, MA, USA) for 

MDCK cell-derived vaccines. Numerous comparative clinical studies have demonstrated the 

safety, immunogenicity and efficacy of both the whole-virus vaccine prepared from Vero 

cells [49,50] and the TIV prepared from virus grown in MDCK cells [51]. A two-dose Vero 

cell-derived whole-virus A(H5N1) vaccine with 7.5 µg HA without adjuvant was previously 

shown to elicit a significant cross-clade neutralizing antibody response in humans [52,53].

4. The use of adjuvants and the safety of influenza vaccines

The immunological bases for using adjuvants in influenza vaccines was reviewed by 

Giuseppe Del Giudice (Novartis, Sienna, Italy), who outlined their beneficial impact on 

the immune response leading to antigen dose-sparing, better priming of immune memory 

including Th1 CD4+ T cell responses, increased breadth of the Ab response, increased 

avidity of the Abs and enhanced effectiveness of the vaccine in young children and older 

adults, as demonstrated with the oil-in-water adjuvant MF59 [54–56]. Dr. Rebecca Cox 

(University of Bergen, Norway) described similar properties of the new Matrix-M adjuvant, 

which was successfully tested with a virosomal A(H5N1) vaccine [57–59].
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Preclinical evaluation of two other new adjuvants were presented: cationic liposomes 

combined with a plasmid DNA (JVRS-100), which was used with an inactivated split 

A(H5N1) vaccine by Xiuhua Lu (CDC, Atlanta, GA, USA); and a synthetic TKPR tetrapep-

tide, tuftsin, which was fused to a branched M2e multiple peptide system [(M2E)4-Tuftsin], 

as described by Xiaoyu Liu (Institute for Viral Disease Control and Prevention, Beijing, 

China). JVRS-100 provided antigen-sparing, cross-clade Ab responses and cross-clade 

protection with enhanced Th1/IgG2a responses in mice. The (M2e)4-tuftsin vaccine showed 

promising results against PR8 challenge in mice.

The risk of adverse events following vaccination with adjuvanted influenza vaccines was 

reviewed by Janet Englund (Washington University, Seattle, WA, USA), Hanna Nohynek 

(Natl Institute of Health and Welfare, Helsinki, Finland), Susanna Esposito (University 

of Milan, Italy) and Katherine Donegan (Medicines and Healthcare Products, Regulatory 

Agency, London, UK). The risk of adverse events following vaccination for pregnant women 

and their fetus appears to be very low, as demonstrated in a number of studies [60–63]. 

Likewise, the safety of influenza vaccination has been demonstrated for children with 

chronic diseases, including asthma and respiratory disabilities [64].

Northern European countries, particularly Sweden and Finland, reported the occurrence 

of narcolepsy in children and adolescents 4–19 years of age after vaccination with 

Pandemrix™, an AS03-adjuvanted, A(H1N1)pdm 2009 vaccine. Narcolepsy is characterized 

by excessive diurnal sleepiness together with episodes of sudden loss of muscle control 

(cataplexy). The event was found to occur in 7 per 100,000 vaccinations. A specific HLA 

allele (HLA DQ B1 0602) in the vaccinees has been implicated but no formal explanation 

can be offered at this time. A recent study from the United Kingdom also reported the 

occurrence of narcolepsy after administration of Pandemrix™ [65].

Arnold Monto (University of Michigan, Ann Harbor, MI, USA), Janet Englund, and Ralf 

Wagner (Paul-Ehrlich Institut, Langen, Germany) discussed the vaccine effectiveness (VE) 

of current influenza vaccines. In general, VE among children was higher for LAIV (~80%) 

than for TIV (50–60%). The elderly show the highest rate of influenza-associated mortality 

(75–135 per 100,000) and the lowest VE (~30%). A household-based study showed that 

VE during the 2010–11 season was lower in those who had received influenza vaccine the 

previous year as compared with those who had not. Results from the US CDC influenza 

VE study network for the 2011–12 season showed a similar effect. Crude VE estimates for 

all influenza and among all ages was 32% in those who had received influenza vaccine the 

previous year compared with 62% among those who had not. Furthermore, adjusted VE was 

considerably lower (37%) against influenza A(H3N2) than against influenza H1 (60%) or B 

(64%) viruses.

Influenza VE in HIV seropositive individual was reviewed by Marta Nunes (Witwatersand, 

SA), who reported that influenza-associated mortality was much higher in HIV-infected than 

uninfected individuals [66,67]. Lower CD4+ T cell counts appear to correlate with lower 

response rates to TIV. Doubling the dose of HA in the vaccine [68] and/or using two doses 

of TIV one month apart [69] increased the seroconversion rate, especially with the AS03- 

or MF59-adjuvanted vaccines. However, a lack of efficacy of a two-dose TIV regimen in 
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HIV positive young children was reported from South Africa, in part due to a drift of 

the circulating A(H3N2) virus [70]. A randomized, controlled Phase II trial was recently 

initiated to evaluate the safety and immunogenicity of TIV in HIV-infected pregnant women 

and their offspring.

Finally, Arnold Monto, on behalf of Joseph Bresee (CDC, Atlanta, GA, USA) provided 

highlights from the International Meeting on Influenza Vaccine Effectiveness hosted by 

WHO in December 2012. The meeting addressed the need for standardization of VE studies 

and for more observational VE studies in low- to mid-income countries. Factors such as 

standard of living, general hygiene and circulation of other viruses may all affect VE of 

influenza vaccines.

5. Concluding remarks

Vaccine strategies involving the M2 protein, the stalk domain of the hemagglutinin, or 

internal viral proteins have shown promise in animal models for the development of 

influenza vaccines that elicit broad, heterosubtypic protective immune responses. However, 

there remains limited information as to their potential in humans. The conduct of vaccine 

efficacy trials with these new vaccines remains a challenge that could be addressed, in part, 

by the use of human challenge studies, which could also provide insight on the identification 

of immune correlates of protection. Non-HA-based vaccine candidates will require novel 

standardized assays to measure vaccine immunogenicity and potency, such as quantitative 

assays to measure anti-HA2 broadly neutralizing Ab levels, M2e-dependent ADCC, mucosal 

immunity and/or T cell responses. Finally, it will be most important to measure the duration 

of immunity elicited by these new vaccines.

Regarding new approaches in influenza vaccination, the development of QIV represents the 

latest improvement but such vaccines still need to be formally tested for clinical efficacy. 

The use of high-dose inactivated vaccines for the elderly may also represent an important 

step forward, but data on their effectiveness is missing. An important domain which remains 

to be explored is that of the burden of disease in low-income, resource-poor countries and 

the study of VE in these countries. For example, poor TIV immunogenicity in HIV-infected 

children is a major challenge to be addressed [70].

The recent licensure of the first recombinant influenza vaccine may herald in a new 

generation of vaccines. Although much progress has been made toward the development 

of vaccines that provide broad-based protection against influenza virus infection, more work 

is still needed to determine whether an effective universal influenza vaccine is achievable.
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